top of page

Python Functions Every Data Scientist Should Know

Writer: IOTA ACADEMYIOTA ACADEMY

Python's broad library support, user-friendliness, and capacity to manage massive datasets effectively make it a leading programming language in data research. Some Python functions may greatly improve your productivity, whether you're cleaning data, doing analysis, or creating machine learning models. This blog will guide you through 50 key Python functions that are divided into many data science disciplines. Every function is well described to make sure you know when and how to utilize it.



python


1. Built-in Python Functions


Python provides a set of built-in functions that simplify data manipulation, iteration, and functional programming. These functions help in handling numbers, collections, and data structures effectively.


1.1 Basic Operations


Basic operations in Python are essential for performing simple tasks such as printing values, finding data types, and rounding numbers.


  • print() – The print() function is used to display text or results in the console. It is commonly used for debugging or outputting results in a structured format.


  • type() – This function helps identify the data type of a variable, which is useful when working with mixed data types in large datasets.


  • len() – This function returns the number of elements in a string, list, or dictionary. It is frequently used in data preprocessing and analysis to determine dataset sizes.


  • round() – The round() function is used to round floating-point numbers to a specified number of decimal places. This is particularly useful in financial calculations and statistics.


  • abs() – This function returns the absolute value of a number, removing any negative sign. It is useful when dealing with distance calculations or error metrics.


1.2 Working with Iterables


When working with lists, tuples, and dictionaries, these functions help extract key values and perform aggregation.


  • min() – Returns the smallest value in a given iterable. This function is particularly useful when identifying the lowest value in a dataset.


  • max() – Similar to min(), this function returns the largest value, helping to find maximum measurements in datasets.


  • sum() – Calculates the sum of all numeric values in an iterable, often used to compute total sales, population, or revenue.


  • sorted() – Returns a sorted list of the given iterable. It is useful when ordering records in ascending or descending order based on numeric or string values.


  • zip() – This function combines multiple iterables element-wise into tuples. It is frequently used in data manipulation and merging related datasets.


1.3 Functional Programming


Functional programming allows you to apply transformations and filtering efficiently.


  • map() – This function applies a specified function to all elements in an iterable, allowing quick transformations of datasets.


  • filter() – Used to filter elements based on a condition, making it easier to extract meaningful subsets of data.


  • reduce() – This function applies a function cumulatively to elements in an iterable, often used for cumulative sums or aggregations.


  • lambda – Defines anonymous functions in a single line, making short, simple operations more readable.


2. NumPy Functions for Numerical Computation


NumPy is the backbone of numerical computing in Python. It provides fast and efficient array operations, making it crucial for data science workflows.


2.1 Creating and Manipulating Arrays


  • np.array() – This function converts a list or tuple into a NumPy array, allowing for efficient element-wise operations.


  • np.zeros() – Generates an array filled with zeros, useful when initializing matrices for computations.


  • np.ones() – Similar to zeros(), but fills the array with ones instead, which is useful in probability calculations.


  • np.arange() – Creates an array with evenly spaced values within a given range, useful in setting up test datasets.


  • np.linspace() – Generates an array with a specified number of values evenly distributed between a start and end point.


2.2 Mathematical Operations


  • np.mean() – Computes the average value of an array, widely used in statistical analysis.


  • np.median() – Returns the middle value in an array, helpful when dealing with skewed distributions.


  • np.std() – Calculates the standard deviation, providing insights into data spread and variability.


  • np.exp() – Computes the exponent of each element, useful in exponential growth models.


  • np.log() – Returns the natural logarithm of each element, a fundamental operation in log transformations.


3. Pandas Functions for Data Manipulation


Pandas is the most commonly used library for handling structured data in Python.


3.1 DataFrame Creation and Inspection


  • pd.DataFrame() – Creates a structured tabular dataset, allowing easy manipulation and analysis.


  • df.head() – Displays the first few rows, useful for quickly inspecting data.


  • df.info() – Provides metadata about a DataFrame, such as column types and missing values.


  • df.describe() – Generates statistical summaries, helping in data exploration.


  • df.shape – Returns the number of rows and columns, giving an overview of dataset size.


3.2 Data Cleaning and Transformation


  • df.fillna() – Replaces missing values with specified values or strategies such as mean imputation.


  • df.dropna() – Removes rows containing missing values, often used when handling incomplete datasets.


  • df.rename() – Renames column labels, improving dataset readability.


  • df.astype() – Converts data types of columns, essential for ensuring compatibility in analysis.


  • df.groupby() – Aggregates data based on specified columns, useful for summarizing categorical data.


4. Matplotlib & Seaborn Functions for Data Visualization


Data visualization is crucial for data storytelling and insights.


4.1 Basic Plots


  • plt.plot() – Creates simple line plots, useful for tracking trends over time.


  • plt.scatter() – Displays relationships between variables using scatter plots.


  • plt.bar() – Generates bar charts, great for categorical comparisons.


  • plt.hist() – Creates histograms, showing frequency distributions.


  • plt.boxplot() – Visualizes distributions, highlighting outliers and medians.


4.2 Seaborn Enhancements


  • sns.heatmap() – Displays correlation matrices using color-coded grids.


  • sns.pairplot() – Shows pairwise relationships between numerical variables.


  • sns.countplot() – Plots categorical distributions in bar format.


  • sns.violinplot() – Combines boxplots and density plots for deeper distribution insights.


  • sns.regplot() – Fits regression lines to scatter plots, aiding trend analysis.


5. Scikit-Learn Functions for Machine Learning


Machine learning relies heavily on Scikit-Learn, offering efficient model-building tools.


5.1 Data Preprocessing


  • train_test_split() – Splits datasets into training and testing sets.


  • StandardScaler() – Standardizes numerical features for optimal model performance.


  • MinMaxScaler() – Normalizes features to a range of 0 to 1.


  • LabelEncoder() – Converts categorical labels into numeric values.


  • OneHotEncoder() – Creates dummy variables for categorical data.


Conclusion


Gaining knowledge of these Python functions can enable data scientists to create reliable machine learning models, streamline processes, and work effectively. You can improve your preprocessing, visualization, and data analysis abilities by becoming proficient in these functions.Do you want to work as a data scientist? Take the Data Science Course at IOTA Academy to learn how to use Python's most potent features firsthand. Join now to begin creating practical projects!

 


Comments


bottom of page